mass_automation package#
Subpackages#
Submodules#
mass_automation.experiment module#
- class mass_automation.experiment.Experiment(path: str, n_scans=None, n_points=None, format: Optional[str] = 'mzXML', verbose: Optional[bool] = True, suppress_caching=True)#
Bases:
object
A class used to represent Experiment.
- spectra_mass#
The list of spectra masses.
- Type:
List
- spectra_ints#
The list of spectra intensities
- Type:
List
- path#
The path to the file.
- Type:
str
- format#
The format of the file (default is ‘mzXML’).
- Type:
str
- n_scans#
The number of scans in the experiment.
- Type:
int
- n_points#
The number of points in the experiment (in millions).
- Type:
int
- add_to_index(function: str, params: Hashable, name: str)#
Adds item to the index
- Parameters:
function (str) – name of the function, currently it is either “get_item” or “summarize”
params (Hashable) – parameters, used for calling the function. Must be immutable
name (str) – path to the cache file
- check_in_index(function: str, params: Hashable) str #
Checks presence of particular function in index
- Parameters:
function (str) – name of the function, currently it is either “get_item” or “summarize”
params (Hashable) – parameters, used for calling the function. Must be immutable
- Returns:
path to the cache
- Return type:
str
- find_name()#
Looks for available name
- get_chromatogram()#
Returns the array of total intensities of the spectra.
Gives an opportunity to estimate the approximate amount of the sample in specific spectrum.
- Returns:
The array of total intensities of the spectra.
- Return type:
np.ndarray
- get_names()#
Helper function to get parent dir for the experiment file and it’s filename without extension
- summarize(item1=None, item2=None, subtract: Optional[bool] = True, cache=False) Spectrum #
Summarizes the spectra of the experiment from a given interval.
The right threshold is not included in the summation.
- Parameters:
item1 (int) – The number of the first spectrum in summation.
item2 (int) – The number of the last spectrum in summation + 1.
subtract (bool) – If True, the mean intensities of the spectra, which go after the summation interval, are substracted from the sum.
cache (bool) – If True, resulting spectrum is saved, else not.
- Returns:
The resulted summarized spectrum.
- Return type:
- Raises:
ValueError – If item1 or item2 exceeds the number of specta in the experiment or item1 is bigger than item2.
- to_chrom_align_net()#
- to_sima(path, min_distance=0.01, algorithm='std', alpha=None)#
- class mass_automation.experiment.Spectrum(masses: ndarray, ints: ndarray, n_scans: Optional[int] = None, n_points: Optional[int] = None, path: Optional[str] = None)#
Bases:
object
A class used to represent Spectrum
- masses#
The array of masses.
- Type:
np.ndarray
- ints#
The array of intensities.
- Type:
np.ndarray
- n_scans#
The number of scans.
- Type:
int
- n_points#
The number of millions of points.
- Type:
int
- deisotoped#
If True, the spectrum has been deisotoped.
- Type:
bool
- isotopic_distributions#
The classifier labels of the spectrum.
- Type:
np.ndarray
- get_slice(left_mass: float, right_mass: float) Spectrum #
Returns a subspectrom of the original spectrum within a specific mass interval
`[left_mass, right_mass]`
- Parameters:
left_mass (float) – The left limit of the interval
right_mass (float) – The right limit of the interval
- Returns:
Subspectrum of the original spectrum. No caching applied
- Return type:
- save_state()#
Saves current state of the object into caching pickle file, set in
`self.path`
- to_msi_warp(min_distance=0.01, algorithm='std', alpha=None)#
- vectorize(min_mass: ~typing.Optional[int] = 150, max_mass: ~typing.Optional[int] = 1000, delta_mass: ~typing.Optional[int] = 1, method: ~typing.Optional[~typing.Callable] = <function amax>, keep_state: ~typing.Optional[bool] = True, n_bins: ~typing.Optional[int] = None, normalize: ~typing.Optional[float] = None) ndarray #
Performs vectorization of the spectrum, where vector components are encoded by one of the available methods.
- Parameters:
min_mass (int) – The left margin of the interval where the vectorization is performed (default is 150).
max_mass (int) – The right margin of the interval where the vectorization is performed (default is 1000).
delta_mass (int) – The length of the interval which is characterized by one spectrum’s vector component (default is 1).
method (Callable) –
The method of vectorization. For instance, the following NumPy functions may be used
np.max - by maximal intensity in vector component intervals,
np.sum - by total intensity
np.mean - by mean intensity (default is np.max).
keep_state (bool) – Defines whether results will be cached or not.
n_bins (int) – Number of bins. If
None
the number of bins will be calculated fromdelta_mass
parameter.normalize (float) – If
None
, maximum value is used for normalization. If-1
, the spectrum is not normalized. Other numbers are used as a normalization constants.
- Returns:
The vector, where components are the numbers characterizing the spectrum intervals.
- Return type:
np.ndarray
- vectorize_by_convolution(min_mass: float, max_mass: float, n_bins: int, sigma: 1e-05, normalize: Optional[float] = None) np.ndarray #
Performs vectorization via convolution. Each peak is represented as a gaussian curve
- Parameters:
min_mass (float) – The left margin of the interval where the vectorization is performed.
max_mass (float) – The right margin of the interval where the vectorization is performed.
n_bins (int) – The number of bins.
sigma (float) – The width of the lorentzian curve.
normalize (float) – If
None
, maximum value is used for normalization. If-1
, the spectrum is not normalized. Other numbers are used as a normalization constants.
- Return type:
np.ndarray
- mass_automation.experiment.peak_pick(mzs, hs, min_distance=0.01, algorithm='std', alpha=None, verbose=False, threshold=None)#
mass_automation.plot module#
mass_automation.uncertainty module#
- class mass_automation.uncertainty.BinaryProbaModelWrapper(model)#
Bases:
object
- predict(*args, **kwargs)#
- class mass_automation.uncertainty.EnsembleWrapper(model_type, models)#
Bases:
object
Wrapper for an ensemble of models.
- predict(*args, **kwargs)#
- predict_all(*args, **kwargs)#
- predict_w_uncertainty(*args, **kwargs)#
- mass_automation.uncertainty.compute_entropy(p)#
- mass_automation.uncertainty.compute_mean_entropy(ps)#
mass_automation.utils module#
- class mass_automation.utils.Element#
Bases:
object
- Ac = 89#
- Ag = 47#
- Al = 13#
- Am = 95#
- Ar = 18#
- As = 33#
- At = 85#
- Au = 79#
- B = 5#
- Ba = 56#
- Be = 4#
- Bh = 107#
- Bi = 83#
- Bk = 97#
- Br = 35#
- C = 6#
- Ca = 20#
- Cd = 48#
- Ce = 58#
- Cf = 98#
- Cl = 17#
- Cm = 96#
- Cn = 112#
- Co = 27#
- Cr = 24#
- Cs = 55#
- Cu = 29#
- Db = 105#
- Ds = 110#
- Dy = 66#
- Er = 68#
- Es = 99#
- Eu = 63#
- F = 9#
- Fe = 26#
- Fl = 114#
- Fm = 100#
- Fr = 87#
- Ga = 31#
- Gd = 64#
- Ge = 32#
- H = 1#
- He = 2#
- Hf = 72#
- Hg = 80#
- Ho = 67#
- Hs = 108#
- I = 53#
- In = 49#
- Ir = 77#
- K = 19#
- Kr = 36#
- La = 57#
- Li = 3#
- Lr = 103#
- Lu = 71#
- Lv = 116#
- Mc = 115#
- Md = 101#
- Mg = 12#
- Mn = 25#
- Mo = 42#
- Mt = 109#
- N = 7#
- Na = 11#
- Nb = 41#
- Nd = 60#
- Ne = 10#
- Nh = 113#
- Ni = 28#
- No = 102#
- Np = 93#
- O = 8#
- Og = 118#
- Os = 76#
- P = 15#
- Pa = 91#
- Pb = 82#
- Pd = 46#
- Pm = 61#
- Po = 84#
- Pr = 59#
- Pt = 78#
- Pu = 94#
- Ra = 88#
- Rb = 37#
- Re = 75#
- Rf = 104#
- Rg = 111#
- Rh = 45#
- Rn = 86#
- Ru = 44#
- S = 16#
- Sb = 51#
- Sc = 21#
- Se = 34#
- Sg = 106#
- Si = 14#
- Sm = 62#
- Sn = 50#
- Sr = 38#
- Ta = 73#
- Tb = 65#
- Tc = 43#
- Te = 52#
- Th = 90#
- Ti = 22#
- Tl = 81#
- Tm = 69#
- Ts = 117#
- U = 92#
- V = 23#
- W = 74#
- Xe = 54#
- Y = 39#
- Yb = 70#
- Zn = 30#
- Zr = 40#
- n_elements = 119#
- mass_automation.utils.lorentzian(x, x0, gam)#